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Abstract 

Fortune (1985) proved Arnold’s conjecture for complex projective spaces, by exploiting the fact 
that cF’-’ is a symplectic quotient of @“. In this paper, we show that Fortune’s approach is universal 
in the sense that it is possible to translate Arnold’s conjecture on any closed symplectic manifold 
(Q, fi) to a critical point problem with symmetry on loops in R”’ with its standard symplectic 
structure. 
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1. Introduction 

Let (Q, fi) be a closed symplectic manifold. A symplectic diffeomorphism cp of (Q, a) 
is said to be exact if it can be obtained by integrating a time-dependent hamiltonian vector 
field. More precisely, cp will be exact if there exists a smooth time-dependent hamiltonian 
h : Q x [0, I] -+ R such that, defining vr by 

d 
Z(P’ = Xh, o ~$9 PO = id@ 

where Xh, satisfies i(Xh,)SZ = -dht, one has cp = cpt . 

In the seventies, Arnold [1,2] conjectured that any exact symplectomorphism cpt of a 
closed symplectic manifold (Q, fi) must have at least as many fixed points as the minimal 
number of critical points for a smooth real-valued function on Q. Moreover, if all fixed 
points are nondegenerate, then the lower bound is given by the minimal number of critical 
points for a Morse function on Q. 

The conjecture has been proved for several classes of manifolds, by using different 
methods and techniques. (A more complete overview of the literature can be found in [31.) 
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The most general results come from Floer’s work [3]. Floer proved Arnold’s conjecture 
for manifolds (Q, J2) for which the class [D] E H2( Q, 08) vanishes on rrz(Q), and the 
nondegenerate part of the conjecture for monotone manifolds, i.e., manifolds for which 
[a] is positively proportional to the first Chem class cl (Q) on nz( Q). A crucial ingredient 
in Floer’s proof is the existence of an action functional or, failing that, of a well-defined 
vector field on the space of loops whose critical points correspond to closed orbits of the 
hamiltonian system on Q. Floer’s techniques have been recently refined (see e.g. [9,13,8]) 
to extend his results to a wider range of manifolds. 

A quite different approach is due to Fortune and Weinstein [5,4]. In the case of @P-l, 
the action functional is multiple valued. This difficulty disappears when one considers the 
hamiltonian system on CP-’ as the reduction, in the sense of Marsden and Weinstein, of 
a hamiltonian system on C” . The problem can be reduced to that of finding certain families 
of critical orbits of the restriction of an S’-invariant action functional, defined in the loop 
space of C”, to a given invariant submanifold. 

The same approach has been recently used by Oh [ 121 and Given&l [6] to get estimates 
for the minimal number of fixed points of exact symplectomorphisms of T2” x Cpk and 
toric symplectic manifolds (i.e., symplectic quotients V//Irk with respect to certain linear 
torus actions), respectively. 

In this paper, we will show how, making use of a suitable inverse reduction, Arnold’s 
conjecture on any closed symplectic manifold (Q, 0) can be formulated as a critical point 
problem with symmetry on loops in a canonical cotangent bundle (T*P,dBp) or, even 
more, as a critical point problem with symmetry on loops in some R2” with its standard 
symplectic structure. The groups involved here are Tk, for the problem in (T* P, dep), and 
a product Uk x R’, for the problem in R2”. We will provide a detailed proof of these facts 
as well as a complete discussion of the resulting variational problems, extending previous 
results announced in [lo]. 

The proof relies on the fact, showed in [7], that every symplectic manifold (Q, a), with 
1;2 of finite integral rank, can be realized as a symplectic reduction (although not always as 
a Marsden-Weinstein reduction) of some R2” with its standard symplectic structure. 

In Section 2 we will extend the use of inverse reduction in [4] to the more general context 
of the Marsden-Weinstein reduction of a symplectic manifold (M, w) with respect to the 
action of a connected abelian Lie group G. We will see how to express the fixed point 
problem on the reduced manifold as a fixed point problem with symmetry on, the usually 
simpler one, (M,w). Then, in Section 1, we will combine these results with Gotay and 
Tuynman’s theorem and, with an appropriate lifting of the hamiltonian system on (Q, f2), 
we will prove our main result (cf. Theorems 2 and 3). 

2. Fixed points and inverse reduction 

Let G be a Lie group acting symplectically on a symplectic manifold (M, w). Let us 
assume that the action admits an Ad*-equivariant momentum map J : M + G*, where B* 
denotes the dual of the Lie algebra G of G. 
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If p E 6* and J-’ (II) is a submanifold of M, then there is an induced action of the stabi- 
lizer group of CL, G,, on J-’ (p). We will assume that the quotient space M, = J-’ (CL)/ G, 
is a smooth manifold and the projection nP : J-’ (p) + M, is a smooth submersion. Under 
these hypotheses, there is an induced symplectic form oP on M, and (M,, cop ) is known 
as the Marsden-Weinstein reduction of (M, w) relative to the group action. 

In what follows, we will restrict ourselves to the action @ : G x M -+ M of a finite- 
dimensional connected abelian Lie group G on M. (Notice that G must be isomorphic to a 
product Tk x R’.) 

Let us consider a given time-dependent hamiltonian H, on M, with associated time- 
dependent hamiltonian vector field XH, . We are looking for closed integral curves of XH, , 
i.e., closed solutions of 

$u(?) = X,(u(t)), u(0) = m (2) 

for any m E M,. 
Now assume that there exists a time-dependent hamiltonian fi : M x [0, l] -+ R on M 

such that each fit is a G-invariant extension to M of the pull-back rr; Ht and let XH, be the 
corresponding hamiltonian vector field. It is easily seen that XG, is tangent to J-‘(w) and 
it projects on XH, . 

Consider any x E J-‘(p) and let 6, be the solution of the initial value problem in M: 

Then 5x lies in J-’ (CL) and a, = rrP o 5., is the solution of (2) with m = rrP (x). For each 
g E G, Qg o 6X = dab will also be an integral curve of Xp, projecting on o,,,. In fact, 
there is a one-to-one correspondence between integral curves a, of XH, and families of 
integral curves of Xp, with initial values at the points of the orbit rr;’ (m). 

The curve c-r, will be closed if and only if each 6X in the corresponding family satis- 
fies 5.r(0) = @g0(3x( 1)) for certain go E G. Since G is a connected abelian group, the 
exponential mapping exp : G -+ G is onto. If we pick any t E exp-‘(go) and define 

6:(t) = ~g~~l)(6x(t)), where gc denotes the curve t H exp(t6) in G, then 6: is a closed 
integral curve of XH, + ,$, with 6~ being the infinitesimal generator of the action on M 
corresponding to < E 6, as we next prove. 

It is obvious that 5:(O) = 6$( 1) = x. 
Now, differentiation of the expression of 5: (t) with respect to r yields 

d -5 &9T (t) = T~~cr,~sc(l,(X~,(~~(t))) + T,,,,,~,,,i(g~(t)). (4) 

Since XQ, is G-invariant, the first term turns out to be XG, (5: (t)). 
On the other hand, denoting by L left translation in G and by e the unit element of G, 

we have 

TR&)@&(t)(&(t)) = T,(@p,(,, 0 Lgc(t))(O = TAO,,(,) 0 @&(1,)(0 

= T~~(t)~R~(1)(~M(~~((t))) = t&(t)) 

and the desired result follows. 

(5) 
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Thus, if Jc = (J, c) is the hamiltonian associated to ,$M, then 6: is the solution of the 
initial value problem in M: 

$u(t) = XQ,+Jc (u(t)), u(0) = x 

and it is closed. 
Notice that Jc is also G-invariant and the reduced vector field of XQ,+~, is again XH, . 
For a nonfree action ’ the element go mentioned above is not unique. It can be replaced by 

any g E guG,, where G, denotes the stabilizer group of x. Moreover, the correspondence 
c H 5: is not one-to-one. More explicitly, since the curves 5: satisfy Qg o 5: = 5: g (x), 

the stabilizer of 5: (t) is G, for each t. On the other hand, 

(7) 

and 

~7: = 6: e exp(t(q - 4)) E Gx, Vt e q - .$ E Gx, (8) 

where Gx denotes the Lie algebra of Gx, which can also be characterized as & = 15 E 

!2 I &V(X) = 0). 
Now we are ready to state the following proposition. 

Proposition 1. To eachfied point m of the exact symplectomorphism @I induced by the 
hamiltonian Hz on Mu there corresponds a family of closed curves in J-’ (p) : &,gO = 

(5: E C”(S’, M) 15: solves (6) x E n;‘(m), 6 E exp-‘(goG,) mod&), for certain 
go E G. This family is diffeomorphic to the product of an orbit G/G, and the projection of 

exp-‘(G,) on 6/L 

3. Lifting to IX*” 

Let (Q, 52) be a closed symplectic manifold and consider a time-dependent hamiltonian 
hz on Q with associated hamiltonian vector field Xh, . Denoting by q, the flow of Xh,, we 
are concerned with the number of fixed points of ~1. 

As mentioned above, our purpose is to translate the fixed point problem on (Q, Q) to a 
critical point problem on loops in Iw 2n We have been motivated by the following theorem. . 

Theorem 1 (Gotay and Tuynman [7]). Every symplectic manifold (Q, L?), with ~2 of$nite 
integral rank, can be realized as a reduction of some 02% with its standard symplectic 
structure. 

Since Q is compact, the condition of R having finite integral rank is automatically satisfied 
in our case. 

’ In Proposition 1 of [lo], the action of G on J-’ (g) was assumed to he free. We derive here the corre- 
sponding result for a general action. 
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On the other hand, reduction in Theorem 1 must be understood in the following sense. 
If (M, w) is a symplectic manifold and N is a submanifold such that the pull-back WN of 

o to N has constant rank and ker WN is fibrating, then the quotient (symplectic) manifold 
MN = N/ ker WN is called the reduction of M by N. 

Therefore, we cannot directly apply the results of Section 2 in order to prove our statement. 
We will develop our proof in three stages, according to the scheme of proof of Theorem 1. 
Step 1: Let us consider the cotangent bundle rQ : T* Q --f Q and let 6Q be the Liouville 

l-form on T*Q. The zero section ZQ is a symplectic submanifold of (T*Q,deQ + t(;D), 
and it is canonically symplectomorphic to (Q, 6?). Therefore, (Q. 0) can be realized as the 
reduction of (T* Q, d6Q + t;n) by ZQ. This is the first step in the proof of Theorem 1. 

Now, we need to lift the fixed point problem from (Q, Sz) to (T*Q,d@Q + ~652). The 
next four lemmas will make the job. 

Lemma 1. There is a one-to-one correspondence between symplectomorphisms of (Q, 52) 
and symplectomorphisms of (T* Q, d@p + t;ti) preserving @Q. 

Proof: It is well known that a diffeomorphism of T* Q is the lift of a diffeomorphism of 
Q if and only if it preserves 8Q, the latter being called homogeneous diffeomorphisms of 
T*Q. 

Thus, to each symplectomorphism cp of (Q, 0) one can associate the homogeneous 
diffeomorphism 

T*q-’ : T*Q -+ T*Q, (a.&) H (v(s), By 0 T,(,)cp 
-I\ 

). 

To show that this diffeomorphism preserves the whole symplectic form on T* Q, it is 
enough to check that (T*lp-‘)*r;G? = tzS2. But this is clear from the property rQ o 

T*cp-’ = cp o rQ and the fact that (p is symplectic. 
Conversely, given a homogeneous symplectomorphism 1+4 of (T * Q, d6’Q + rT, Sz), there 

exists a unique diffeomorphism cp of Q such that @ = T*qO-‘, and this diffeomorphism 
is symplectic, since: @*(deQ + ~60) = d6Q + r;fi implies @*r;fi = r;fi, that is, 
r;i(cp*JJ - $2) F 0. But ri is injective, so that ~*a = a, as was to be proved. 0 

Lemma 2. There is a one-to-one correspondence between smooth hamiltonian isotopies 
qt of (Q, 0) and smooth hamiltonian isotopies Qr of (T*Q, d@Q + tza) such that $rt is 
homogeneous for each t. 

Proof: Let vr be the flow induced by a hamiltonian ht on (Q, G?), and define lCIt = T’cp,’ . 
Then, the +r constitute a smooth family of homogeneous symplectomorphisms connecting 
$1 with the identity map. 

Now, let us consider the vector field defined by differentiating $t in t : 

-$A = % 0 $t. (10) 
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From tQ 0 lJ?f = q+ 0 tQ, it follows that 

TTQ(&) = &, 0 tQ. (11) 

Therefore, i(x,)(rGa) = -d(ht o TQ). 

On the other hand, 

i(x,) d6Q = L~,@Q - d(oQ(z,)), (12) 

where L stands for the Lie derivative. Since the @, are homogeneous, Lp,@Q = 0 and, 
finally, 

i(_%,)(deQ + t;Q) = -d@Q($) + h, 0 SQ). (13) 

Thus, the family *I is generated by the hamiltonian 

Ht = hl erg +~Q(XI). (14) 

In terms of the original hamiltonian hr 

Ht(q,&) = h,(q) +&(&,(q)), V(q,&) E T*Q. (15) 

Conversely, let +t be the flow induced by a hamiltonian Ht on (7” Q, dep + ria) and 
suppose that, for each r, +, is homogeneous. Then, there exists a family (Pt of symplecto- 
morphisms of (Q, Q) such that r,!rr = T*q,‘, Vt. 

If j : ZQ of T* Q denotes the inclusion of the zero section, then Ht o j is a hamiltonian 
on the symplectic submanifold ZQ, which in turn defines a hamiltonian ht on Q by 

Htoj=h,o~Qoj. (16) 

A straightforward calculation shows that this hamiltonian generates the family (pt. 0 

The fixed points (q, #?,) of +t are characterized by the two conditions cot(q) = q and 
& o T4cp;' = &. The last one is equivalent to the existence of an eigenvector of T,vl with 
eigenvalue equal to 1, namely, the vector defined by i( = &. Hence, the following 
lemma holds. 

Lemma 3. To each fixed point q of ~1, one can univocally associate a subspace V, c 
T: Q of jxed points of @I, whose dimension is equal to the multiplicity of q: m(q) = 

dim ker(T4qt - idr4Q). 

Moreover, for the nondegenerate case, we have the following lemma. 

Lemma 4. et is nondegenerate if and only ifql is nondegenerate. 
Under these circumstances, there is a one-to-one correspondence between fixed points 

of both symplectomorphisms. 

ProoJ Suppose that (pt is nondegenerate and let (q. &) be a fixed point of $1. By the preced- 
ing remarks, it must be /Is = 0,. Let wcq, 0,) E T(,, 0,) T’Q be an eigenvector of Tc4. o,)v% 
with eigenvalue equal to 1. The nondegeneracy of q implies lucs, 0,) E ker Tc4, o,)rQ. As 
aconsequence, the l-form i(W(,,o,))d(,.o,)@g + (r;a)(,,o,)) is a l-form on T(,,o,)Zp. 
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Using the canonical identification between ZQ and Q, it is not difficult to check that this 
l-form defines a Tq’pt -invariant l-form on T4 Q. Since the last l-form must be zero, we 
conclude that UJ(~, 0,) = 0. 

Conversely, suppose that $1 is nondegenerate and consider a fixed point q of cpi Then, 
(q, 0,) is a nondegenerate fixed point of qt. Using again the identification between ZY 
and Q, it is easily seen that to each vector vq E Tq Q one can univocally associate a 
vector w(,,u,) E Tcq,+)T*Q, tangent to ZQ, which must be T(,,(),)$t-invariant if vy is 
Tq’pl -invariant. Since (q, 0,) is nondegenerate, wcy, u,, ), and hence vy , must be zero. 0 

The fixed point problem in (Q, a) can be lifted in this way to an equivalent fixed point 
problem in (T* Q, dep + t;fi). We must search for the fixed points of the exact symplecto- 
morphism @I, induced by a hamiltonian Hr of the form (15) on T* Q. In the case of general 
exact symplectomorphisms, we must count, instead of single fixed points, whole subspaces 
of fixed points of $1. 

Step 2: The symplectic manifold (T* Q, dep + tzfl) is obtained as a reduction, in the 
sense of Marsden and Weinstein, of a canonical cotangent bundle (T* I’, d0p) as follows 

(see ]71). 
Since R has finite integral rank, R = pict + . + pkck, where cl, . . , Ck are inte- 

gral closed 2-forms and ~1, . . . , pk are real constants. According to the prequantization 
procedure of Kostant and Souriau, for each i = 1. . . , k there exists a principal S’ -bundle 
ni : Pi + Q, with a connection Ai whose curvature satisfies dAi = rrlc; The fiber product 
of the Pi, rr : P + Q, is a principal Tk-bundle with connection A = (Al, . . . , Ak) and 
curvature dA = @*cl, . . . ,JT*Ck). 

Let us denote by @ the action of Tk on P, and by @r* the cotangent lifting of @ to 
(T* P, d0p). There is a canonically defined momentum map J : T* P -+ Rk given by 

J(p, yp) = (W$)*Y,, = vp 0 T,@,, (17) 

wheree= (1, . . ..l)istheunitelementofTk. 
The cotangent bundle reduction theorem (see [ 111) provides a symplectic diffeomor- 

phism VA,lr between the symplectic manifolds (T*Q,deQ + rt(ptct +. f pkCk)) and 

(J-‘(,u)lTk, (dOp)P), where I-L = (PI. . . ,,Uk). 

Our purpose is to find an invariant extension fir of Ht o V&I* o nW to T*P, where Hf is 
the hamiltonian (15). 

The existence of such an extension is guaranteed by the fact that Tk is compact. It should 
also be clear from Section 2 that any invariant extension allows us to lift the problem 
to T*P. However, we will next describe a natural construction of fit in terms of the 
connection A. 

Given the connection A on P, one can construct a lift nA : T*P + T* Q of r to the 
cotangent bundles, as explained in [ 141. 

For each p E P we have an exact sequence 

T&J T,* 0 - Rk - TpP - Tn(,,)Q - 0, (18) 
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The connection A gives a splitting of ( 18), which in turn defines a linear map r, : TX(,) Q + 
Tp P (the image of r, consisting of all horizontal vectors in T, P). 

We also have a splitting of the dual exact sequence 

0 - Rk VA’,)* - T; P ‘Tpn)* T,*(,, Q - 0 

and nA is defined fiberwise by 

The map IfA is a lift of n in the sense that it I'tKikeS the diagram 

commutative. Moreover, nA is constant along the orbits of the lifted action 4jT*. 
From the explicit construction of VA, P in [ 1 I], it is easily seen that the diagram 

(19) 

(20) 

(21) 

J-b4 -% J-‘(p)/? 

ifl 4 & VA.@ (22) 

T*P 2 T*Q 

where i, is the inclusion of J-’ (p), also commutes. 
From the commutativity of this diagram, one can immediately derive the following 

lemma. 

Lemma 5. The time-dependent hamiltonian fi, = H, 0 rA is a uk-invariant C?Xk?nSiOn of 

HI o VA,b on, to T*P. 

In terms of the hamiltonian hr on Q, we have 

&((P, vp) = ht(r(p)> + v#“(&,(n(~)))), V(P, vp) E T*P. (23) 

On the other hand, if V, is the subspace of Lemma 3, then the points in J-‘(p) projec- 
ting onto V, constitute the Tk-orbits of points in (CL, AP) + (T,g)*(V4) C T;P, for any 
p E r-l(q). Indeed, if (p, yp) belongs to J-‘(p), then vP must be of the form 

vp = (~9 Ap) + L%(p) 0 Tpnv 

where /Irrcp) E Tzcp, Q. Besides, 

(24) 

(vA,&o~,)(p,!'p) = li.A(f',yp) = (dP).~p o rp) = (~(P),k%(p)). (25) 

Thus, 

(‘)A,/A Onw,) -‘WY) = u ((CL, AP) + U@)*WqN. 
PET_'@) 

(26) 
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The invariance of A and Tn imply that this union is in fact a union of orbits of the action 
QT* on T*P. 

From the definition of fit, it is clear that the integral curves of the associated vector field 
Xh, project on horizontal lifts to P of integral curves of Xh, 

Now, let 8(,, rp) and 6(,,, ,,;, be two integral curves of XkI with (different) initial values 

in (p, AP) + (T,gr)*(V4) and corresponding to the same fixed point 9 in Q. Let go and gk 
be the elements of Tk relating their initial and final values. Then it is easy to check that 
since both rp o 8(,, vp) and tp o 8,,* v;, are equal to the horizontal lift to P of the curve 

q,(q), go and gh must coincide. 
Combining the results of Steps 1 and 2, and using Proposition 1 particularized to the case 

of a free torus action, we can state the following theorem. 

Theorem 2. Let us consider the initial value problem in T* P: 

&I = xfi,+JJw)? u(O) = (PY Yp) (27) 

with ;i = (11 , . . . , k_k) E [Wk. Then, to eachJixed point q of cp1 there corresponds a family 
of closed curves in J-‘(w) c T* P: .Fq,a = [3&, vpj E C”(S’, T* P) 1 CT&, vpl solves 
(27),hi = ai (mod2rr),Vi,n(p) = q,yp E (p,Ap) + (T,,n)*(V,)), for certain a = 
(al, . . . , ak) E [Wk. This family is diffeomorphic to V, x Tk x Zk. 

By Hamilton’s principle, the closed integral curves of Xgl+JA are exactly the critical 
points of the action functional 

1 

Sfi,*h) = s s @P - (Ijr(UuO)) + J&(t))) dt (28) 
u 0 

defined on closed loops u in T * P . 
Notice that this functional is Tk-invariant, where the (free) action of Uk on the loop space 

of T*P is the obvious one: (@,(u))(t) = Qg(u(t)). 
We are looking for critical loops satisfying 

J(u(t>) = p, Vt E s’. (29) 

Since the hamiltonians considered are Tk-invariant, this pointwise condition is equivalent 
on critical loops to the constraint J(u) = /A where 

J(u) = s J@(t)) dt (30) 

0 

takes its values in Rk. This map J can be seen as a momentum mapping for the action of 
Uk on the loop space of T* P. 

Following [4], one can apply now Lagrange’s multipliers theorem and identify the critical 
points above with the critical points of the restriction f of Se, o to 3-l (/A). Notice that 
because the action of Uk is free, the map J will be a submersion at every u E J-’ (p). 
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Let us compute now the difference between critical values of f corresponding to the 
same fixed point in Q. 

If u is a critical loop of Sfi A. . belonging to the family associated to a closed curve (~~(9) 
in Q, then: 

I 1 

f(u) = 
J 

(b)u(t,(W)) dt - 
s 

fit(W) dt 

0 0 

1 1 

= 
s 

(+)u(r)(~~*~(Nc))) dt + 
s 

~(t)(T,(t)~~(Xljl(~(t)))) dt 

0 0 

1 1 1 
,. 

- 
s 

HI (u(t)) dt = 
s 

A@(r)) dt - 
s 

hl ((n 0 rp 0 u)(r)) dr 

0 0 0 

= (cL,W - /i(lot(q)W (31) 

and the difference between any two critical values off corresponding to a fixed point q E Q 
is of the form (II, tl) with n E exp-‘(e) = hk. 

Thus, to each fixed point of the hamiltonian system on Q there corresponds a tower of 
critical values of f, parametrized by the set ((y, r]) 1 r~ E @‘I. 

Step 3: First of all, we will briefly recall the last step in Gotay and Tuynman’s proof. 
They first take a closed equivariant embedding P c-f W in some orthogonal representa- 

tion space for Tk. (The existence of such an embedding is a well-known theorem of Mostow 
and Palais.) 

In order to obtain (T* Q, d6Q + t;J2) as a Marsden-Weinstein reduction of the corre- 

sponding T*R” N lR 2n they first show that the ideal in Coo(lF!“) of all functions vanishing , 
on P is generated over Coa (Rn) by a finite collection (fl, . . . , fi} of V-invariant functions. 

Then, they define, for each i = 1, . . . , I, a hamiltonian Fi = fi or,, where rn : R2” -+ R” 
is the canonical cotangent projection. The flows of the corresponding hamiltonian vector 
fields define a symplectic @-action with momentum map F = (Fl, . . . , Ff). The Marsden- 
Weinstein reduction of lR2” relative to this action, F-’ (0)/R’, is symplectomorphic to 
(T* P, df3p). 

Since the functions J;: have been chosen Uk-invariant, the l&-action commutes with the 
cotangent lifting of the @-action on R”, and there is a well-defined symplectic (Uk x II@)- 
action with momentum map K x F, where K is the canonical momentum map for the 
torus action. Now, it follows that (T* Q, d0Q + $a) is symplectomorphic to the reduced 

manifold (K x F)-l(,x; O)/(Uk x R’). 
Notice that the @-action is simply given by 

(32) 
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and F-‘(O) = T$W’. The projection TTP : T;lR” + T* P is just the projection associated 
to the direct sum decomposition 

T,*lR” =T,*P@span(d,fl, . . ..d.h} (33) 

for each x E P, and it is Uk-equivariant. The orbits of the @-action on Ti[w” are diffeo- 
morphic to Rcodim ‘. 

Ontheotherhand,rrp(K-‘(k)nF-‘(0)) = J-‘(w)andtheprojection(KxF)-‘(p;O) 

+ (K x F)-‘(I.L; O)/(Uk x R’) is 7~~ 0 XP IK-~cw,nFm~c~,. 

Next we prove the following lemma. 

Lemma 6. There exists an (Uk x @)-invariant extension fir of Hr o vA,@ o n, o 

rPlrl(fi)nF-I(0) to [w**. 

Pro06 First notice that it will suffice to construct an iR’-invariant extension & of fir o rrp 
which is also Irk-invariant. 

Since Uk is compact, we can always find a @-invariant tubular neighborhood II of P in 
R”, a smooth Uk-equivariant retraction r : U --f P, and a Tk-invariant partition of unity 
(po, PI) subordinate to the open cover (U, IF!” - P) of R”. 

Now define 

B:R*“x[o,l] -+ R, ((x. y), t) * PO(~) (fir 0 XP) (r(x), y). (34) 

It is easily seen that this hamiltonian gives an @-invariant extension &if of & o 7tp, which 
is also Uk-invariant. 0 

As in Step 2, it is not hard to verify that the points in IL!*” projecting onto V, constitute 
the (Uk x @)-orbits of points belonging to (,LL, A,) + (T,x)*(V,), for any n E n-‘(s). 

Now, we can state the following theorem. 

Theorem 3. Let us consider the initial value problem in R*” : 

$U(f) = xfi,+(Kx&4t))? u(0) = (x, y) 

with c = (Al,. . . , &; bl, . . . , bt) 6 Rk x Rf. Then, to each fixed point q of cp1 there 
corresponds a family of closed curves in (K x F)-’ (CL, 0) c R*“: TqS (1 = 

Ia. -;x,Y) E cW9 R2? I qx, y) solves(35),ki = ai(mod2n)Vi, X(X) = q,y E (/_L,A.,) 

+ (Txrr)*(V,) +span(d,fr, . . ..d.fi]),forcertaina = (al, . . ..Uk) E I@. Thisfamilyis 
diffeomorphic to V, x Uk x Rn-k-dim Q x Zk. 

Remark. Notice that a closed curve ~7:~ “) is determined by the data (x, y) and h. 

As before, the fixed point problem in Q can be translated to the problem of finding the 
critical points of the family of action functionals in the loop space of R2n: 
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1 I 1 

= s s 00 - Z?r(u(t)) dt - 
s 

K~(u(r)) dr - 
s 

Fb(u 0)) dt (36) 
U 0 0 0 

with e = (h; b) E IF@ x R’, subject to the constraints: 

I 1 

K(u) = 
s 

K@(t)) dt = CL, F(u) = 
J 

F@(t)) dt = 0. (37) 
0 0 

The action of Tk x I@ is not free now and K-*(p) fl F’(O) will not be in general 
a submanifold. Nevertheless, one may still consider the components of h as Lagrange’s 
multipliers, as we next explain. 

Proposition 2. With the previous notation, the set K-’ (k) is a submanifold of codimension 
k in the space offree loops on R2n. 

Proo$ Let us consider a loop u E K-‘(p). The tangent map T,K fails to be surjective if 
and only if the stabilizer group of u in Tk is not discrete, i.e. if and only if the corresponding 
Lie subalgebra (h E lRk 1 A.nz,, o u = 0) is not zero (hRzn denotes, as is customary in this 
paper, the vector field associated to the element h in the Lie algebra of Tk by means of its 
action on R2n). 

If the stabilizer of u is not discrete, it must contain a subgroup isomorphic to S’ . Hence, 
the stabilizer algebra must contain an element )c E (27r@ which generates the circle. This 
A will belong to the kernel of CL, because 

~R2n~~=O=+K~ou=O~K~(u)=(~,h)=0. (38) 

Butk = (PI, . . . , pk) comes from the decomposition 52 = ptct + . + . f PkCk, so that 
we may assume that p 1, . . . , @k are independent over E, hence ker p does not contain any 
nonzero A E (2rrZ)k. 

Therefore, K is a submersion at every u E K-‘(p) and K-‘(p) is a submanifold. 0 

Thus, the critical points of the family (36) satisfying (37) are exactly the critical points 
of the family of functionals fb, b E R’ defined by the restriction of the functionals 

I 1 

‘fi (0 b) = . 1 s s- 00 - H,@(r)) dt - 
s 

Fb(U(t)) dt, 

u 0 0 

(39) 

to the submanifold K-‘(p), and satisfying 3(u) = 0. 
It must be noticed that the role played by the parameters b is quite different to the role 

played by the Lagrange multipliers 3\. because they do not produce any splitting of the critical 
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subsets. To each critical Tk-orbit of the functional f in Step 2 there corresponds a critical 
(Tk x &)-orbit of a subfamily (parametrized by R’-codim ‘) of functionals fh. 

Finally, a short computation shows that the critical values of the functionals fb corre- 
sponding to the same fixed point q E Q are again of the form 

I 

f/,(u) = (AL) - s h(cpt(q))dl (40) 

and hence they are arranged in a tower parametrized again by the set ((w, q) ) 17 E Zk} 
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