JOURNAL OF GEOMETRYAND PHYSICS

Arnold's conjecture and symplectic reduction

A. Ibort, C. Martínez Ontalba
Dpto. de Física Teórica., Univ. Complutense de Madrid, 28040 Madrid, Spain

Received 1 Junc 1994

Abstract

Fortune (1985) proved Arnold's conjecture for complex projective spaces, by exploiting the fact that $\mathbb{C} \mathbb{P}^{n-1}$ is a symplectic quotient of \mathbb{C}^{n}. In this paper, we show that Fortune's approach is universal in the sense that it is possible to translate Arnold's conjecture on any closed symplectic manifold (Q, Ω) to a critical point problem with symmetry on loops in $\mathbb{R}^{2 n}$ with its standard symplectic structure.

Keywords: Symplectic reduction; Arnold's conjecture
1991 MSC: 58F05, 58G15

1. Introduction

Let (Q, Ω) be a closed symplectic manifold. A symplectic diffeomorphism φ of (Q, Ω) is said to be exact if it can be obtained by integrating a time-dependent hamiltonian vector field. More precisely, φ will be exact if there exists a smooth time-dependent hamiltonian $h: Q \times[0,1] \rightarrow \mathbb{R}$ such that, defining φ_{t} by

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \varphi_{t}=X_{h_{t}} \circ \varphi_{t}, \quad \varphi_{0}=\mathrm{id}_{Q} \tag{1}
\end{equation*}
$$

where $X_{h_{1}}$ satisfies $\mathrm{i}\left(X_{h_{t}}\right) \Omega=-\mathrm{d} h_{t}$, one has $\varphi=\varphi_{1}$.
In the seventies, Arnold [1,2] conjectured that any exact symplectomorphism φ_{1} of a closed symplectic manifold (Q, Ω) must have at least as many fixed points as the minimal number of critical points for a smooth real-valued function on Q. Moreover, if all fixed points are nondegenerate, then the lower bound is given by the minimal number of critical points for a Morse function on Q.

The conjecture has been proved for several classes of manifolds, by using different methods and techniques. (A more complete overview of the literature can be found in [3].)

The most general results come from Floer's work [3]. Floer proved Arnold's conjecture for manifolds (Q, Ω) for which the class $[\Omega] \in H^{2}(Q, \mathbb{R})$ vanishes on $\pi_{2}(Q)$, and the nondegenerate part of the conjecture for monotone manifolds, i.e., manifolds for which [Ω] is positively proportional to the first Chern class $c_{1}(Q)$ on $\pi_{2}(Q)$. A crucial ingredient in Floer's proof is the existence of an action functional or, failing that, of a well-defined vector field on the space of loops whose critical points correspond to closed orbits of the hamiltonian system on Q. Floer's techniques have been recently refined (see e.g. [9,13,8]) to extend his results to a wider range of manifolds.

A quite different approach is due to Fortune and Weinstein [5,4]. In the case of $\mathbb{C} \mathbf{P}^{n-1}$, the action functional is multiple valued. This difficulty disappears when one considers the hamiltonian system on $\mathbb{C} \mathbf{P}^{n-1}$ as the reduction, in the sense of Marsden and Weinstein, of a hamiltonian system on \mathbb{C}^{n}. The problem can be reduced to that of finding certain families of critical orbits of the restriction of an S^{1}-invariant action functional, defined in the loop space of \mathbb{C}^{n}, to a given invariant submanifold.

The same approach has been recently used by Oh [12] and Givental [6] to get estimates for the minimal number of fixed points of exact symplectomorphisms of $\mathbb{T}^{2 n} \times \mathbb{C P}^{k}$ and toric symplectic manifolds (i.e., symplectic quotients $\mathbb{C}^{n} / / \mathbb{T}^{k}$ with respect to certain linear torus actions), respectively.

In this paper, we will show how, making use of a suitable inverse reduction, Arnold's conjecture on any closed symplectic manifold (Q, Ω) can be formulated as a critical point problem with symmetry on loops in a canonical cotangent bundle ($T^{*} P, \mathrm{~d} \theta_{P}$) or, even more, as a critical point problem with symmetry on loops in some $\mathbb{R}^{2 n}$ with its standard symplectic structure. The groups involved here are \mathbb{T}^{k}, for the problem in ($T^{*} P, \mathrm{~d} \theta_{P}$), and a product $\mathbb{T}^{k} \times \mathbb{R}^{l}$, for the problem in $\mathbb{R}^{2 n}$. We will provide a detailed proof of these facts as well as a complete discussion of the resulting variational problems, extending previous results announced in [10].

The proof relies on the fact, showed in [7], that every symplectic manifold (Q, Ω), with Ω of finite integral rank, can be realized as a symplectic reduction (although not always as a Marsden-Weinstein reduction) of some $\mathbb{R}^{2 n}$ with its standard symplectic structure.

In Section 2 we will extend the use of inverse reduction in [4] to the more general context of the Marsden-Weinstein reduction of a symplectic manifold (M, ω) with respect to the action of a connected abelian Lie group G. We will see how to express the fixed point problem on the reduced manifold as a fixed point problem with symmetry on, the usually simpler one, (M, ω). Then, in Section 1, we will combine these results with Gotay and Tuynman's theorem and, with an appropriate lifting of the hamiltonian system on (Q, Ω), we will prove our main result (cf. Theorems 2 and 3).

2. Fixed points and inverse reduction

Let G be a Lie group acting symplectically on a symplectic manifold (M, ω). Let us assume that the action admits an Ad^{*}-equivariant momentum map $J: M \rightarrow \mathcal{G}^{*}$, where \mathcal{G}^{*} denotes the dual of the Lie algebra \mathcal{G} of G.

If $\mu \in \mathcal{G}^{*}$ and $J^{-1}(\mu)$ is a submanifold of M, then there is an induced action of the stabilizer group of μ, G_{μ}, on $J^{-1}(\mu)$. We will assume that the quotient space $M_{\mu}=J^{-1}(\mu) / G_{\mu}$ is a smooth manifold and the projection $\pi_{\mu}: J^{-1}(\mu) \rightarrow M_{\mu}$ is a smooth submersion. Under these hypotheses, there is an induced symplectic form ω_{μ} on M_{μ} and (M_{μ}, ω_{μ}) is known as the Marsden-Weinstein reduction of (M, ω) relative to the group action.

In what follows, we will restrict ourselves to the action $\Phi: G \times M \rightarrow M$ of a finitedimensional connected abelian Lie group G on M. (Notice that G must be isomorphic to a product $\mathbb{T}^{k} \times \mathbb{R}^{l}$.)

Let us consider a given time-dependent hamiltonian H_{t} on M_{μ} with associated timedependent hamiltonian vector field $X_{H_{t}}$. We are looking for closed integral curves of $X_{H_{l}}$, i.e., closed solutions of

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} u(t)=X_{H_{t}}(u(t)), \quad u(0)=m \tag{2}
\end{equation*}
$$

for any $m \in M_{\mu}$.
Now assume that there exists a time-dependent hamiltonian $\tilde{H}: M \times[0,1] \rightarrow \mathbb{R}$ on M such that each \tilde{H}_{t} is a G-invariant extension to M of the pull-back $\pi_{\mu}^{*} H_{t}$ and let $X_{\tilde{H}_{t}}$ be the corresponding hamiltonian vector field. It is easily seen that $X_{\tilde{H}_{l}}$ is tangent to $J^{-1}(\mu)$ and it projects on $X_{H_{t}}$.

Consider any $x \in J^{-1}(\mu)$ and let $\tilde{\sigma}_{x}$ be the solution of the initial value problem in M :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} u(t)=X_{\tilde{H}_{t}}(u(t)), \quad u(0)=x . \tag{3}
\end{equation*}
$$

Then $\tilde{\sigma}_{x}$ lies in $J^{-1}(\mu)$ and $\sigma_{m}=\pi_{\mu} \circ \tilde{\sigma}_{x}$ is the solution of (2) with $m=\pi_{\mu}(x)$. For each $g \in G, \Phi_{g} \circ \tilde{\sigma}_{x}=\tilde{\sigma}_{\Phi_{g}(x)}$ will also be an integral curve of $X_{\tilde{H}_{t}}$ projecting on σ_{m}. In fact, there is a one-to-one correspondence between integral curves σ_{m} of $X_{H_{l}}$ and families of integral curves of̂ $X_{\tilde{H}_{l}}$ with initial values at the points of the orbit $\pi_{\mu}^{-1}(m)$.

The curve σ_{m} will be closed if and only if each $\tilde{\sigma}_{x}$ in the corresponding family satisfies $\tilde{\sigma}_{x}(0)=\Phi_{g_{0}}\left(\tilde{\sigma}_{x}(1)\right)$ for certain $g_{0} \in G$. Since G is a connected abelian group, the exponential mapping $\exp : \mathcal{G} \rightarrow G$ is onto. If we pick any $\xi \in \exp ^{-1}\left(g_{0}\right)$ and define $\tilde{\sigma}_{x}^{\xi}(t)=\Phi_{g_{\xi}(t)}\left(\tilde{\sigma}_{x}(t)\right)$, where g_{ξ} denotes the curve $t \mapsto \exp (t \xi)$ in G, then $\tilde{\sigma}_{x}^{\xi}$ is a closed integral curve of $X_{\tilde{H}_{t}}+\xi_{M}$, with ξ_{M} being the infinitesimal generator of the action on M corresponding to $\xi \in \mathcal{G}$, as we next prove.

It is obvious that $\tilde{\sigma}_{x}^{\xi}(0)=\tilde{\sigma}_{x}^{\xi}(1)=x$.
Now, differentiation of the expression of $\tilde{\sigma}_{x}^{\xi}(t)$ with respect to t yields

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{\sigma}_{x}^{\xi}(t)=T_{\tilde{\sigma}_{x}(t)} \Phi_{g_{\xi}(t)}\left(X_{\tilde{H}_{t}}\left(\tilde{\sigma}_{x}(t)\right)\right)+T_{g_{\xi}(t)} \Phi_{\tilde{\sigma}_{x}(t)}\left(\dot{g}_{\xi}(t)\right) \tag{4}
\end{equation*}
$$

Since $X_{\tilde{H}_{t}}$ is G-invariant, the first term turns out to be $X_{\hat{H}_{t}}\left(\tilde{\sigma}_{x}^{\xi}(t)\right)$.
On the other hand, denoting by L left translation in G and by e the unit element of G, we have

$$
\begin{align*}
T_{g_{\xi}(t)} \Phi_{\tilde{\sigma}_{x}(t)}\left(\dot{g}_{\xi}(t)\right) & =T_{e}\left(\Phi_{\tilde{\sigma}_{x}(t)} \circ L_{g_{\xi}(t)}\right)(\xi)=T_{e}\left(\Phi_{g_{\xi}(t)} \circ \Phi_{\tilde{\sigma}_{x}(t)}\right)(\xi) \\
& =T_{\tilde{\sigma}_{x}(t)} \Phi_{g_{\xi}(t)}\left(\xi_{M}\left(\tilde{\sigma}_{x}(t)\right)\right)=\xi_{M}\left(\tilde{\sigma}_{x}^{\xi}(t)\right) \tag{5}
\end{align*}
$$

and the desired result follows.

Thus, if $J_{\xi}=\langle J, \xi\rangle$ is the hamiltonian associated to ξ_{M}, then $\tilde{\sigma}_{x}^{\xi}$ is the solution of the initial value problem in M :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} u(t)=X_{\tilde{H}_{t}+J_{\xi}}(u(t)), \quad u(0)=x \tag{6}
\end{equation*}
$$

and it is closed.
Notice that J_{ξ} is also G-invariant and the reduced vector field of $X_{\tilde{H}_{l}+J_{\xi}}$ is again $X_{H_{t}}$.
For a nonfree action ${ }^{1}$ the element g_{0} mentioned above is not unique. It can be replaced by any $g \in g_{0} G_{x}$, where G_{x} denotes the stabilizer group of x. Moreover, the correspondence $\xi \mapsto \tilde{\sigma}_{x}^{\xi}$ is not one-to-one. More explicitly, since the curves $\tilde{\sigma}_{x}^{\xi}$ satisfy $\Phi_{g} \circ \tilde{\sigma}_{x}^{\xi}=\tilde{\sigma}_{\Phi_{g}(x)}^{\xi}$, the stabilizer of $\tilde{\sigma}_{x}^{\xi}(t)$ is G_{x} for each t. On the other hand,

$$
\begin{equation*}
\tilde{\sigma}_{x}^{\eta}(t)=\Phi_{g_{\eta-\xi}(t)}\left(\tilde{\sigma}_{x}^{\xi}(t)\right) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\sigma}_{x}^{\eta}=\tilde{\sigma}_{x}^{\xi} \Leftrightarrow \exp (t(\eta-\xi)) \in G_{x}, \quad \forall t \Leftrightarrow \eta-\xi \in \mathcal{G}_{x}, \tag{8}
\end{equation*}
$$

where \mathcal{G}_{x} denotes the Lic algebra of \boldsymbol{G}_{x}, which can also be characterized as $\mathcal{G}_{x}=\{\xi \in$ $\left.\mathcal{G} \mid \xi_{M}(x)=0\right\}$.

Now we are ready to state the following proposition.
Proposition 1. To each fixed point m of the exact symplectomorphism ψ_{1} induced by the hamiltonian H_{l} on M_{μ} there corresponds a family of closed curves in $J^{-1}(\mu): \mathcal{F}_{m, g_{0}}=$ $\left\{\tilde{\sigma}_{x}^{\xi} \in C^{\infty}\left(S^{1}, M\right) \mid \tilde{\sigma}_{x}^{\xi}\right.$ solves $\left.(6), x \in \pi_{\mu}^{-1}(m), \xi \in \exp ^{-1}\left(g_{0} G_{x}\right) \bmod \mathcal{G}_{x}\right\}$, for certain $g_{0} \in G$. This family is diffeomorphic to the product of an orbit G / G_{x} and the projection of $\exp ^{-1}\left(G_{x}\right)$ on $\mathcal{G} / \mathcal{G}_{x}$.

3. Lifting to $\mathbb{R}^{2 n}$

Let (Q, Ω) be a closed symplectic manifold and consider a time-dependent hamiltonian h_{t} on Q with associated hamiltonian vector field $X_{h_{t}}$. Denoting by φ_{t} the flow of $X_{h_{t}}$, we are concerned with the number of fixed points of φ_{1}.

As mentioned above, our purpose is to translate the fixed point problem on (Q, Ω) to a critical point problem on loops in $\mathbb{R}^{2 n}$. We have been motivated by the following theorem.

Theorem 1 (Gotay and Tuynman [7]). Every symplectic manifold (Q, Ω), with Ω of finite integral rank, can be realized as a reduction of some $\mathbb{R}^{2 n}$ with its standard symplectic structure.

Since Q is compact, the condition of Ω having finite integral rank is automatically satisfied in our case.

[^0]On the other hand, reduction in Theorem 1 must be understood in the following sense.
If (M, ω) is a symplectic manifold and N is a submanifold such that the pull-back ω_{N} of ω to N has constant rank and ker ω_{N} is fibrating, then the quotient (symplectic) manifold $M_{N}=N / \operatorname{ker} \omega_{N}$ is called the reduction of M by N.

Therefore, we cannot directly apply the results of Section 2 in order to prove our statement.
We will develop our proof in three stages, according to the scheme of proof of Theorem 1.
Step 1: Let us consider the cotangent bundle $\tau_{Q}: T^{*} Q \rightarrow Q$ and let θ_{Q} be the Liouville 1 -form on $T^{*} Q$. The zero section Z_{Q} is a symplectic submanifold of ($T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega$), and it is canonically symplectomorphic to (Q, Ω). Therefore, (Q, Ω) can be realized as the reduction of $\left(T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega\right)$ by Z_{Q}. This is the first step in the proof of Theorem 1.

Now, we need to lift the fixed point problem from (Q, Ω) to ($T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega$). The next four lemmas will make the job.

Lemma 1. There is a one-to-one correspondence between symplectomorphisms of (Q, Ω) and symplectomorphisms of $\left(T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega\right)$ preserving θ_{Q}.

Proof. It is well known that a diffeomorphism of $T^{*} Q$ is the lift of a diffeomorphism of Q if and only if it preserves θ_{Q}, the latter being called homogeneous diffeomorphisms of $T^{*} Q$.

Thus, to each symplectomorphism φ of (Q, Ω) one can associate the homogeneous diffeomorphism

$$
\begin{equation*}
T^{*} \varphi^{-1}: T^{*} Q \rightarrow T^{*} Q, \quad\left(q, \beta_{q}\right) \mapsto\left(\varphi(q), \beta_{q} \circ T_{\varphi(q)} \varphi^{-1}\right) \tag{9}
\end{equation*}
$$

To show that this diffeomorphism preserves the whole symplectic form on $T^{*} Q$, it is enough to check that $\left(T^{*} \varphi^{-1}\right)^{*} \tau_{Q}^{*} \Omega=\tau_{Q}^{*} \Omega$. But this is clear from the property $\tau_{Q} \circ$ $T^{*} \varphi^{-1}=\varphi \circ \tau_{Q}$ and the fact that φ is symplectic.

Conversely, given a homogeneous symplectomorphism ψ of ($T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega$), there exists a unique diffeomorphism φ of Q such that $\psi=T^{*} \varphi^{-1}$, and this diffeomorphism is symplectic, since: $\psi^{*}\left(\mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega\right)=\mathrm{d} \theta_{Q}+\tau_{Q}^{*} \Omega$ implies $\psi^{*} \tau_{Q}^{*} \Omega=\tau_{Q}^{*} \Omega$, that is, $\tau_{Q}^{*}\left(\varphi^{*} \Omega-\Omega\right)=0$. But τ_{Q}^{*} is injective, so that $\varphi^{*} \Omega=\Omega$, as was to be proved.

Lemma 2. There is a one-to-one correspondence between smooth hamiltonian isotopies φ_{t} of (Q, Ω) and smooth hamiltonian isotopies ψ_{t} of $\left(T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega\right)$ such that ψ_{t} is homogeneous for each t.

Proof. Let φ_{t} be the flow induced by a hamiltonian h_{t} on (Q, Ω), and define $\psi_{t}=T^{*} \varphi_{t}^{-1}$. Then, the ψ_{t} constitute a smooth family of homogeneous symplectomorphisms connecting ψ_{1} with the identity map.

Now, let us consider the vector field defined by differentiating ψ_{t} in t :

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \psi_{t}=\tilde{X}_{t} \circ \psi_{t} \tag{10}
\end{equation*}
$$

From $\tau_{Q} \circ \psi_{t}=\varphi_{t} \circ \tau_{Q}$, it follows that

$$
\begin{equation*}
T \tau_{Q}\left(\tilde{X}_{t}\right)=X_{h_{t}} \circ \tau_{Q} \tag{11}
\end{equation*}
$$

Therefore, $\mathrm{i}\left(\tilde{X}_{t}\right)\left(\tau_{Q}^{*} \Omega\right)=-\mathrm{d}\left(h_{t} \circ \tau_{Q}\right)$.
On the other hand,

$$
\begin{equation*}
\mathrm{i}\left(\tilde{X}_{t}\right) \mathrm{d} \theta_{Q}=\mathcal{L}_{\tilde{X}_{t}} \theta_{Q}-\mathrm{d}\left(\theta_{Q}\left(\tilde{X}_{t}\right)\right) \tag{12}
\end{equation*}
$$

where \mathcal{L} stands for the Lie derivative. Since the ψ_{t} are homogeneous, $\mathcal{L}_{\tilde{X}_{t}} \theta_{Q}=0$ and, finally,

$$
\begin{equation*}
\mathrm{i}\left(\tilde{X}_{t}\right)\left(\mathrm{d} \theta_{Q}+\tau_{Q}^{*} \Omega\right)=-\mathrm{d}\left(\theta_{Q}\left(\tilde{X}_{t}\right)+h_{t} \circ \tau_{Q}\right) \tag{13}
\end{equation*}
$$

Thus, the family ψ_{t} is generated by the hamiltonian

$$
\begin{equation*}
H_{t}=h_{t} \circ \tau_{Q}+\theta_{Q}\left(\tilde{X}_{t}\right) . \tag{14}
\end{equation*}
$$

In terms of the original hamiltonian h_{t}

$$
\begin{equation*}
H_{t}\left(q, \beta_{q}\right)=h_{t}(q)+\beta_{q}\left(X_{h_{i}}(q)\right), \quad \forall\left(q, \beta_{q}\right) \in T^{*} Q \tag{15}
\end{equation*}
$$

Conversely, let ψ_{t} be the flow induced by a hamiltonian H_{t} on $\left(T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega\right)$ and suppose that, for each t, ψ_{t} is homogeneous. Then, there exists a family φ_{t} of symplectomorphisms of (Q, Ω) such that $\psi_{t}=T^{*} \varphi_{t}^{-1}, \forall t$.

If $j: Z_{Q} \hookrightarrow T^{*} Q$ denotes the inclusion of the zero section, then $H_{t} \circ j$ is a hamiltonian on the symplectic submanifold Z_{Q}, which in turn defines a hamiltonian h_{t} on Q by

$$
\begin{equation*}
H_{t} \circ j=h_{t} \circ \tau_{Q} \circ j \tag{16}
\end{equation*}
$$

A straightforward calculation shows that this hamiltonian generates the family φ_{t}.
The fixed points $\left(q, \beta_{q}\right)$ of ψ_{1} are characterized by the two conditions $\varphi_{1}(q)=q$ and $\beta_{q} \circ T_{q} \varphi_{1}^{-1}=\beta_{q}$. The last one is equivalent to the existence of an eigenvector of $T_{q} \varphi_{1}$ with eigenvalue equal to 1 , namely, the vector defined by $\mathrm{i}\left(v_{q}\right) \Omega_{q}=\beta_{q}$. Hence, the following lemma holds.

Lemma 3. To each fixed point q of φ_{1}, one can univocally associate a subspace $V_{q} \subset$ $T_{q}^{*} Q$ of fixed points of ψ_{1}, whose dimension is equal to the multiplicity of $q: m(q)=$ $\operatorname{dim} \operatorname{ker}\left(T_{q} \varphi_{1}-\mathrm{id}_{T_{q} Q}\right)$.

Moreover, for the nondegenerate case, we have the following lemma.
Lemma 4. ψ_{1} is nondegenerate if and only if φ_{1} is nondegenerate.
Under these circumstances, there is a one-to-one correspondence between fixed points of both symplectomorphisms.

Proof. Suppose that φ_{1} is nondegenerate and let (q, β_{q}) be a fixed point of ψ_{1}. By the preceding remarks, it must be $\beta_{q}=0_{q}$. Let $w_{\left(q, 0_{q}\right)} \in T_{\left(q, 0_{q}\right)} T^{*} Q$ be an eigenvector of $T_{\left(q, 0_{q}\right)} \psi_{1}$ with eigenvalue equal to 1 . The nondegeneracy of q implies $w_{\left(q, 0_{q}\right)} \in \operatorname{ker} T_{\left(q, 0_{q}\right)} \tau_{Q}$. As a consequence, the 1 -form $\left.\mathrm{i}\left(w_{\left(q, 0_{q}\right)}\right) \mathrm{d}_{\left(q, 0_{q}\right)} \theta_{Q}+\left(\tau_{Q}^{*} \Omega\right)_{\left(q, 0_{q}\right)}\right)$ is a 1-form on $T_{\left(q, 0_{q}\right)} Z_{Q}$.

Using the canonical identification between Z_{Q} and Q, it is not difficult to check that this 1-form defines a $T_{q} \varphi_{1}$-invariant 1 -form on $T_{q} Q$. Since the last 1 -form must be zero, we conclude that $w_{\left(q, 0_{q}\right)}=0$.

Conversely, suppose that ψ_{1} is nondegenerate and consider a fixed point q of φ_{1}. Then, $\left(q, 0_{q}\right)$ is a nondegenerate fixed point of ψ_{1}. Using again the identification between Z_{Q} and Q, it is easily seen that to each vector $v_{q} \in T_{q} Q$ one can univocally associate a vector $w_{\left(q, 0_{q}\right)} \in T_{\left(q, 0_{q}\right)} T^{*} Q$, tangent to Z_{Q}, which must be $T_{\left(q, 0_{q}\right)} \psi_{1}$-invariant if v_{q} is $T_{q} \varphi_{1}$-invariant. Since ($q, 0_{q}$) is nondegenerate, $w_{\left(q, 0_{q}\right)}$, and hence v_{q}, must be zero.

The fixed point problem in (Q, Ω) can be lifted in this way to an equivalent fixed point problem in $\left(T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega\right)$. We must search for the fixed points of the exact symplectomorphism ψ_{1}, induced by a hamiltonian H_{t} of the form (15) on $T^{*} Q$. In the case of general exact symplectomorphisms, we must count, instead of single fixed points, whole subspaces of fixed points of ψ_{1}.

Step 2: The symplectic manifold $\left(T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega\right)$ is obtained as a reduction, in the sense of Marsden and Weinstein, of a canonical cotangent bundle ($T^{*} P, \mathrm{~d} \theta_{P}$) as follows (see [7]).

Since Ω has finite integral rank, $\Omega=\mu_{1} c_{1}+\cdots+\mu_{k} c_{k}$, where c_{1}, \ldots, c_{k} are integral closed 2 -forms and μ_{1}, \ldots, μ_{k} are real constants. According to the prequantization procedure of Kostant and Souriau, for each $i=1, \ldots, k$ there exists a principal S^{1}-bundle $\pi_{i}: P_{i} \rightarrow Q$, with a connection A_{i} whose curvature satisfies $\mathrm{d} A_{i}=\pi_{i}^{*} c_{i}$. The fiber product of the $P_{i}, \pi: P \rightarrow Q$, is a principal \mathbb{T}^{k}-bundle with connection $A=\left(A_{1}, \ldots, A_{k}\right)$ and curvature $\mathrm{d} A=\left(\pi^{*} c_{1}, \ldots, \pi^{*} c_{k}\right)$.

Let us denote by Φ the action of \mathbb{T}^{k} on P, and by $\Phi^{T^{*}}$ the cotangent lifting of Φ to ($T^{*} P, \mathrm{~d} \theta_{P}$). There is a canonically defined momentum map $J: T^{*} P \rightarrow \mathbb{R}^{k}$ given by

$$
\begin{equation*}
J\left(p, \gamma_{p}\right)=\left(T_{e} \Phi_{p}\right)^{*} \gamma_{p}=\gamma_{p} \cap T_{e} \Phi_{p} \tag{17}
\end{equation*}
$$

where $e=(1, \ldots, 1)$ is the unit element of \mathbb{T}^{k}.
The cotangent bundle reduction theorem (see [11]) provides a symplectic diffeomorphism $\nu_{A, \mu}$ between the symplectic manifolds ($T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*}\left(\mu_{1} c_{1}+\cdots+\mu_{k} c_{k}\right)$) and $\left(J^{-1}(\mu) / \pi^{k},\left(\mathrm{~d} \theta_{P}\right)_{\mu}\right)$, where $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right)$.

Our purpose is to find an invariant extension \hat{H}_{t} of $H_{t} \circ \nu_{A, \mu} \circ \pi_{\mu}$ to $T^{*} P$, where H_{t} is the hamiltonian (15).

The existence of such an extension is guaranteed by the fact that \mathbb{T}^{k} is compact. It should also be clear from Section 2 that any invariant extension allows us to lift the problem to $T^{*} P$. However, we will next describe a natural construction of \hat{H}_{t} in terms of the connection A.

Given the connection A on P, one can construct a lift $\pi_{A}: T^{*} P \rightarrow T^{*} Q$ of π to the cotangent bundles, as explained in [14].

For each $p \in P$ we have an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathbb{R}^{k} \xrightarrow{T_{e} \Phi_{p}} T_{p} P \xrightarrow{T_{p} \pi} T_{\pi(p)} Q \longrightarrow 0, \tag{18}
\end{equation*}
$$

The connection A gives a splitting of (18), which in turn defines a linear map $\Gamma_{p}: T_{\pi(p)} Q \rightarrow$ $T_{p} P$ (the image of Γ_{p} consisting of all horizontal vectors in $T_{p} P$).

We also have a splitting of the dual exact sequence

$$
\begin{equation*}
0 \longleftarrow \mathbb{R}^{k} \stackrel{\left(T_{e} \Phi_{p}\right)^{*}}{\longleftarrow} T_{p}^{*} P \stackrel{\left(T_{p} \pi\right)^{*}}{\longleftarrow} T_{\pi(p)}^{*} Q \longleftarrow 0 \tag{19}
\end{equation*}
$$

and π_{A} is defined fiberwise by

$$
\begin{equation*}
\pi_{A} \mid T_{p}^{*} P=\Gamma_{p}^{*} . \tag{20}
\end{equation*}
$$

The map π_{A} is a lift of π in the sense that it makes the diagram

commutative. Moreover, π_{A} is constant along the orbits of the lifted action $\Phi^{T^{*}}$.
From the explicit construction of $\nu_{A, \mu}$ in [11], it is easily seen that the diagram

$$
\begin{array}{rll}
J^{-1}(\mu) & \xrightarrow{\pi_{\mu}} & J^{-1}(\mu) / \mathbb{T}^{k} \\
i_{\mu} \downarrow & & \downarrow \nu_{A, \mu} \tag{22}\\
T^{*} P & \xrightarrow{\pi_{A}} & T^{*} Q
\end{array}
$$

where i_{μ} is the inclusion of $J^{-1}(\mu)$, also commutes.
From the commutativity of this diagram, one can immediately derive the following lemma.

Lemma 5. The time-dependent hamiltonian $\hat{H}_{t}=H_{t} \circ \pi_{A}$ is $a \mathbb{J}^{k}$-invariant extension of $H_{t} \circ \nu_{A, \mu} \circ \pi_{\mu}$ to $T^{*} P$.

In terms of the hamiltonian h_{t} on Q, we have

$$
\begin{equation*}
\hat{H}_{t}\left(p, \gamma_{p}\right)=h_{t}(\pi(p))+\gamma_{p}\left(\Gamma_{p}\left(X_{h_{t}}(\pi(p))\right)\right), \quad \forall\left(p, \gamma_{p}\right) \in T^{*} P . \tag{23}
\end{equation*}
$$

On the other hand, if V_{q} is the subspace of Lemma 3, then the points in $J^{-1}(\mu)$ projecting onto V_{q} constitute the \mathbb{T}^{k}-orbits of points in $\left\langle\mu, A_{p}\right\rangle+\left(T_{p} \pi\right)^{*}\left(V_{q}\right) \subset T_{p}^{*} P$, for any $p \in \pi^{-1}(q)$. Indeed, if $\left(p, \gamma_{p}\right)$ belongs to $J^{-1}(\mu)$, then γ_{p} must be of the form

$$
\begin{equation*}
\gamma_{p}=\left\langle\mu, A_{p}\right\rangle+\beta_{\pi(p)} \circ T_{p} \pi, \tag{24}
\end{equation*}
$$

where $\beta_{\pi(p)} \in T_{\pi(p)}^{*} Q$. Besides,

$$
\begin{equation*}
\left(\nu_{A, \mu} \circ \pi_{\mu}\right)\left(p, \gamma_{p}\right)=\pi_{A}\left(p, \gamma_{p}\right)=\left(\pi(p), \gamma_{p} \circ \Gamma_{p}\right)=\left(\pi(p), \beta_{\pi(p)}\right) . \tag{25}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\left(v_{A, \mu} \circ \pi_{\mu}\right)^{-1}\left(V_{q}\right)=\bigcup_{p \in \pi^{-1}(q)}\left(\left\langle\mu, A_{p}\right\rangle+\left(T_{p} \pi\right)^{*}\left(V_{q}\right)\right) \tag{26}
\end{equation*}
$$

The invariance of A and $T \pi$ imply that this union is in fact a union of orbits of the action $\Phi^{T^{*}}$ on $T^{*} P$.

From the definition of \hat{H}_{t}, it is clear that the integral curves of the associated vector field $X_{\hat{H}_{t}}$ project on horizontal lifts to P of integral curves of $X_{h_{t}}$.

Now, let $\hat{\sigma}_{\left(p, \gamma_{p}\right)}$ and $\hat{\sigma}_{\left(p, \gamma_{p}^{\prime}\right)}$ be two integral curves of $X_{\hat{H}_{t}}$ with (different) initial values in $\left\langle\mu, A_{p}\right\rangle+\left(T_{p} \pi\right)^{*}\left(V_{q}\right)$ and corresponding to the same fixed point q in Q. Let g_{0} and g_{0}^{\prime} be the elements of \mathbb{T}^{k} relating their initial and final values. Then it is easy to check that since both $\tau_{P} \circ \hat{\sigma}_{\left(p, \gamma_{p}\right)}$ and $\tau_{P} \circ \hat{\sigma}_{\left(p, \gamma_{p}^{\prime}\right)}$ are equal to the horizontal lift to P of the curve $\varphi_{t}(q), g_{0}$ and g_{0}^{\prime} must coincide.

Combining the results of Steps 1 and 2, and using Proposition 1 particularized to the case of a free torus action, we can state the following theorem.

Theorem 2. Let us consider the initial value problem in $T^{*} P$:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} u(t)=X_{\hat{H}_{t}+J_{\lambda}}(u(t)), \quad u(0)=\left(p, \gamma_{p}\right) \tag{27}
\end{equation*}
$$

with $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right) \in \mathbb{R}^{k}$. Then, to each fixed point q of φ_{1} there corresponds a family of closed curves in $J^{-1}(\mu) \subset T^{*} P: \mathcal{F}_{q, a}=\left\{\hat{\sigma}_{\left(p, \gamma_{p}\right)}^{\lambda} \in C^{\infty}\left(S^{1}, T^{*} P\right) \mid \hat{\sigma}_{\left(p, \gamma_{p}\right)}^{\lambda}\right.$ solves (27), $\left.\lambda_{i}=a_{i}(\bmod 2 \pi), \forall i, \pi(p)=q, \gamma_{p} \in\left\langle\mu, A_{p}\right\rangle+\left(T_{p} \pi\right)^{*}\left(V_{q}\right)\right\}$, for certain $a=$ $\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{R}^{k}$. This family is diffeomorphic to $V_{q} \times \mathbb{T}^{k} \times \mathbb{Z}^{k}$.

By Hamilton's principle, the closed integral curves of $X_{\hat{H}_{t}+J_{\lambda}}$ are exactly the critical points of the action functional

$$
\begin{equation*}
S_{\hat{H}, \lambda}(u)=\int_{u} \theta_{P}-\int_{0}^{1}\left(\hat{H}_{t}(u(t))+J_{\lambda}(u(t))\right) \mathrm{d} t \tag{28}
\end{equation*}
$$

defined on closed loops u in $T^{*} P$.
Notice that this functional is \mathbb{T}^{k}-invariant, where the (free) action of \mathbb{T}^{k} on the loop space of $T^{*} P$ is the obvious one: $\left(\Phi_{g}(u)\right)(t)=\Phi_{g}(u(t))$.

We are looking for critical loops satisfying

$$
\begin{equation*}
J(u(t))=\mu, \quad \forall t \in S^{1} \tag{29}
\end{equation*}
$$

Since the hamiltonians considered are \mathbb{T}^{k}-invariant, this pointwise condition is equivalent on critical loops to the constraint $\mathcal{J}(u)=\mu$, where

$$
\begin{equation*}
\mathcal{J}(u)=\int_{0}^{1} J(u(t)) \mathrm{d} t \tag{30}
\end{equation*}
$$

takes its values in \mathbb{R}^{k}. This map \mathcal{J} can be seen as a momentum mapping for the action of \mathbb{T}^{k} on the loop space of $T^{*} P$.

Following [4], one can apply now Lagrange's multipliers theorem and identify the critical points above with the critical points of the restriction f of $S_{\hat{H} .0}$ to $\mathcal{J}^{-1}(\mu)$. Notice that because the action of \mathbb{T}^{k} is free, the map \mathcal{J} will be a submersion at every $u \in \mathcal{J}^{-1}(\mu)$.

Let us compute now the difference between critical values of f corresponding to the same fixed point in Q.

If u is a critical loop of $S_{\hat{H}, \lambda}$ belonging to the family associated to a closed curve $\varphi_{t}(q)$ in Q, then:

$$
\begin{align*}
f(u)= & \int_{0}^{1}\left(\theta_{P}\right)_{u(t)}(\dot{u}(t)) \mathrm{d} t-\int_{0}^{1} \hat{H}_{t}(u(t)) \mathrm{d} t \\
= & \int_{0}^{1}\left(\theta_{P}\right)_{u(t)}\left(\lambda_{T^{*} P}(u(t))\right) \mathrm{d} t+\int_{0}^{1} u(t)\left(T_{u(t)} \tau_{P}\left(X_{\hat{H}_{t}}(u(t))\right)\right) \mathrm{d} t \\
& -\int_{0}^{1} \hat{H}_{t}(u(t)) \mathrm{d} t=\int_{0}^{1} J_{\lambda}(u(t)) \mathrm{d} t-\int_{0}^{1} h_{t}\left(\left(\pi \circ \tau_{p} \circ u\right)(t)\right) \mathrm{d} t \\
= & \langle\mu, \lambda\rangle-\int_{0}^{1} h_{t}\left(\varphi_{t}(q)\right) \mathrm{d} t \tag{31}
\end{align*}
$$

and the difference between any two critical values of f corresponding to a fixed point $q \in Q$ is of the form $\langle\mu, \eta\rangle$ with $\eta \in \exp ^{-1}(e)=\mathbb{Z}^{k}$.

Thus, to each fixed point of the hamiltonian system on Q there corresponds a tower of critical values of f, parametrized by the set $\left\{\langle\mu, \eta\rangle \mid \eta \in \mathbb{Z}^{k}\right\}$.

Step 3: First of all, we will briefly recall the last step in Gotay and Tuynman's proof.
They first take a closed equivariant embedding $P \hookrightarrow \mathbb{R}^{n}$ in some orthogonal representation space for \mathbb{T}^{k}. (The existence of such an embedding is a well-known theorem of Mostow and Palais.)

In order to obtain ($T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega$) as a Marsden-Weinstein reduction of the corresponding $T^{*} \mathbb{R}^{n} \simeq \mathbb{R}^{2 n}$, they first show that the ideal in $C^{\infty}\left(\mathbb{R}^{n}\right)$ of all functions vanishing on P is generated over $C^{\infty}\left(\mathbb{R}^{n}\right)$ by a finite collection $\left\{f_{1}, \ldots, f_{l}\right\}$ of \mathbb{T}^{k}-invariant functions.

Then, they define, for each $i=1, \ldots, l$, a hamiltonian $F_{i}=f_{i} \circ \tau_{n}$, where $\tau_{n}: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{n}$ is the canonical cotangent projection. The flows of the corresponding hamiltonian vector fields define a symplectic \mathbb{R}^{l}-action with momentum map $F=\left(F_{1}, \ldots, F_{l}\right)$. The MarsdenWeinstein reduction of $\mathbb{R}^{2 n}$ relative to this action, $F^{-1}(0) / \mathbb{R}^{l}$, is symplectomorphic to ($T^{*} P, \mathrm{~d} \theta_{P}$).

Since the functions f_{i} have been chosen \mathbb{T}^{k}-invariant, the \mathbb{R}^{l}-action commutes with the cotangent lifting of the \mathbb{T}^{k}-action on \mathbb{R}^{n}, and there is a well-defined symplectic ($\mathbb{T}^{k} \times \mathbb{R}^{l}$)action with momentum map $K \times F$, where K is the canonical momentum map for the torus action. Now, it follows that ($T^{*} Q, \mathrm{~d} \theta_{Q}+\tau_{Q}^{*} \Omega$) is symplectomorphic to the reduced manifold $(K \times F)^{-1}(\mu ; \mathbf{0}) /\left(\mathbb{T}^{k} \times \mathbb{R}^{l}\right)$.

Notice that the \mathbb{R}^{l}-action is simply given by

$$
\begin{equation*}
\Psi_{\left(b_{1}, \ldots, b_{l}\right)}(x, y)=\left(x, y-\sum_{i=1}^{l} b_{i} d_{x} f_{i}\right), \quad \forall(x, y) \in \mathbb{R}^{2 n} \tag{32}
\end{equation*}
$$

and $F^{-1}(\mathbf{0})=T_{P}^{*} \mathbb{R}^{n}$. The projection $\pi_{P}: T_{P}^{*} \mathbb{R}^{n} \rightarrow T^{*} P$ is just the projection associated to the direct sum decomposition

$$
\begin{equation*}
T_{x}^{*} \mathbb{R}^{n}=T_{x}^{*} P \oplus \operatorname{span}\left[d_{x} f_{1}, \ldots, d_{x} f_{l}\right] \tag{33}
\end{equation*}
$$

for each $x \in P$, and it is \mathbb{T}^{k}-equivariant. The orbits of the \mathbb{R}^{I}-action on $T_{P}^{*} \mathbb{R}^{n}$ are diffeomorphic to $\mathbb{R}^{\text {codim } P}$.

On the other hand, $\pi_{P}\left(K^{-1}(\mu) \cap F^{-1}(\mathbf{0})\right)=J^{-1}(\mu)$ and the projection $(K \times F)^{-1}(\mu ; \mathbf{0})$ $\rightarrow(K \times F)^{-1}(\mu ; \boldsymbol{0}) /\left(\mathbb{T}^{k} \times \mathbb{R}^{l}\right)$ is $\left.\pi_{\mu} \circ \pi_{P}\right|_{K^{-1}(\mu) \cap F^{-1}(\mathbf{0})}$.

Next we prove the following lemma.
Lemma 6. There exists an $\left(\mathbb{T}^{k} \times \mathbb{R}^{l}\right)$-invariant extension \tilde{H}_{t} of $H_{t} \circ v_{A}, \mu \circ \pi_{\mu} \circ$ $\left.\pi_{P}\right|_{K^{-1}(\mu) \cap F^{-1}(\mathbf{0})}$ to $\mathbb{R}^{2 n}$.

Proof. First notice that it will suffice to construct an \mathbb{R}^{l}-invariant extension \tilde{H}_{l} of $\hat{H}_{l} \circ \pi_{P}$ which is also \mathbb{T}^{k}-invariant.

Since \mathbb{T}^{k} is compact, we can always find a \mathbb{T}^{k}-invariant tubular neighborhood U of P in \mathbb{R}^{n}, a smooth \mathbb{T}^{k}-equivariant retraction $r: U \rightarrow P$, and a \mathbb{T}^{k}-invariant partition of unity $\left\{\rho_{0}, \rho_{1}\right\}$ subordinate to the open cover $\left\{U, \mathbb{R}^{n}-P\right\}$ of \mathbb{R}^{n}.

Now define

$$
\begin{equation*}
\tilde{H}: \mathbb{R}^{2 n} \times[0,1] \rightarrow \mathbb{R}, \quad((x, y), t) \mapsto \rho_{0}(x)\left(\hat{H}_{t} \circ \pi_{P}\right)(r(x), y) . \tag{34}
\end{equation*}
$$

It is easily seen that this hamiltonian gives an \mathbb{R}^{l}-invariant extension \tilde{H}_{t} of $\hat{H}_{t} \circ \pi_{P}$, which is also \mathbb{T}^{k}-invariant.

As in Step 2, it is not hard to verify that the points in $\mathbb{R}^{2 n}$ projecting onto V_{q} constitute the ($T^{k} \times \mathbb{R}^{l}$)-orbits of points belonging to $\left\langle\mu, A_{x}\right\rangle+\left(T_{x} \pi\right)^{*}\left(V_{q}\right)$, for any $x \in \pi^{-1}(q)$.

Now, we can state the following theorem.
Theorem 3. Let us consider the initial value problem in $\mathbb{R}^{2 n}$:

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} u(t)=X_{\tilde{H}_{t}+(K \times F)_{5}}(u(t)), \quad u(0)=(x, y) \tag{35}
\end{equation*}
$$

with $\xi=\left(\lambda_{1}, \ldots, \lambda_{k} ; b_{1}, \ldots, b_{l}\right) \in \mathbb{R}^{k} \times \mathbb{R}^{l}$. Then, to each fixed point q of φ_{1} there corresponds a family of closed curves in $(K \times F)^{-1}(\mu, \mathbf{0}) \subset \mathbb{R}^{2 n}: \tilde{\mathcal{F}}_{q, a}=$ $\left\{\tilde{\sigma}_{(x, y)}^{\xi} \in C^{\infty}\left(S^{1}, \mathbb{R}^{2 n}\right) \mid \tilde{\sigma}_{(x, y)}^{\xi}\right.$ solves $(35), \lambda_{i}=a_{i}(\bmod 2 \pi) \forall i, \pi(x)=q, y \in\left\langle\mu, A_{x}\right\rangle$ $\left.+\left(T_{x} \pi\right)^{*}\left(V_{q}\right)+\operatorname{span}\left\{d_{x} f_{1}, \ldots, d_{x} f_{l}\right\}\right\}$, for certain $a-\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{R}^{k}$. This family is diffeomorphic to $V_{q} \times \mathbb{T}^{k} \times \mathbb{R}^{n-k-\operatorname{dim} Q} \times \mathbb{Z}^{k}$.

Remark. Notice that a closed curve $\tilde{\sigma}_{(x, y)}^{\xi}$ is determined by the data (x, y) and λ.
As before, the fixed point problem in Q can be translated to the problem of finding the critical points of the family of action functionals in the loop space of $\mathbb{R}^{2 n}$:

$$
\begin{align*}
S_{\tilde{H}, \xi}(u) & =\int_{u} \theta_{0}-\int_{0}^{1}\left(\tilde{H}_{t}(u(t))+(K \times F)_{\xi}(u(t))\right) \mathrm{d} t \\
& =\int_{u} \theta_{0}-\int_{0}^{1} \tilde{H}_{t}(u(t)) \mathrm{d} t-\int_{0}^{1} K_{\lambda}(u(t)) \mathrm{d} t-\int_{0}^{1} F_{b}(u(t)) \mathrm{d} t \tag{36}
\end{align*}
$$

with $\xi=(\lambda ; b) \in \mathbb{R}^{k} \times \mathbb{R}^{l}$, subject to the constraints:

$$
\begin{equation*}
\mathcal{K}(u)=\int_{0}^{1} K(u(t)) \mathrm{d} t=\mu, \quad \mathcal{F}(u)=\int_{0}^{1} F(u(t)) \mathrm{d} t=0 . \tag{37}
\end{equation*}
$$

The action of $\mathbb{T}^{k} \times \mathbb{R}^{l}$ is not free now and $\mathcal{K}^{-1}(\mu) \cap \mathcal{F}^{-1}(\mathbf{0})$ will not be in general a submanifold. Nevertheless, one may still consider the components of λ as Lagrange's multipliers, as we next explain.

Proposition 2. With the previous notation, the set $\mathcal{K}^{-1}(\mu)$ is a submanifold of codimension k in the space of free loops on $\mathbb{R}^{2 n}$.

Proof. Let us consider a loop $u \in \mathcal{K}^{-1}(\mu)$. The tangent map $T_{u} \mathcal{K}$ fails to be surjective if and only if the stabilizer group of u in \mathbb{T}^{k} is not discrete, i.e. if and only if the corresponding Lie subalgebra $\left\{\lambda \in \mathbb{R}^{k} \mid \lambda_{\mathbb{R}^{2 n}} \circ u=0\right\}$ is not zero ($\lambda_{\mathbb{R}^{2 n}}$ denotes, as is customary in this paper, the vector field associated to the element λ in the Lie algebra of \mathbb{T}^{k} by means of its action on $\mathbb{R}^{2 n}$).

If the stabilizer of u is not discrete, it must contain a subgroup isomorphic to S^{1}. Hence, the stabilizer algebra must contain an element $\lambda \in(2 \pi \mathbb{Z})^{k}$ which generates the circle. This λ will belong to the kernel of μ, because

$$
\begin{equation*}
\lambda_{\mathbb{R}^{2 n}} \circ u=0 \Rightarrow K_{\lambda} \circ u=0 \Rightarrow \mathcal{K}_{\lambda}(u)=\langle\mu, \lambda\rangle=0 \tag{38}
\end{equation*}
$$

But $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right)$ comes from the decomposition $\Omega=\mu_{1} c_{1}+\cdots+\mu_{k} c_{k}$, so that we may assume that μ_{1}, \ldots, μ_{k} are independent over \mathbb{Z}, hence ker μ does not contain any nonzero $\lambda \in(2 \pi \mathbb{Z})^{k}$.

Therefore, \mathcal{K} is a submersion at every $u \in \mathcal{K}^{-1}(\mu)$ and $\mathcal{K}^{-1}(\mu)$ is a submanifold.
Thus, the critical points of the family (36) satisfying (37) are exactly the critical points of the family of functionals $f_{b}, b \in \mathbb{R}^{l}$ defined by the restriction of the functionals

$$
\begin{equation*}
S_{\tilde{H}_{\cdot}(0, b)}=\int_{u} \theta_{0}-\int_{0}^{1} \tilde{H}_{t}(u(t)) \mathrm{d} t-\int_{0}^{1} F_{b}(u(t)) \mathrm{d} t \tag{39}
\end{equation*}
$$

to the submanifold $\mathcal{K}^{-1}(\mu)$, and satisfying $\mathcal{F}(u)=0$.
It must be noticed that the role played by the parameters b is quite different to the role played by the Lagrange multipliers λ because they do not produce any splitting of the critical
subsets. To each critical \mathbb{T}^{k}-orbit of the functional f in Step 2 there corresponds a critical $\left(\mathbb{T}^{k} \times \mathbb{R}^{l}\right.$)-orbit of a subfamily (parametrized by $\mathbb{R}^{l-\operatorname{codim} P}$) of functionals f_{b}.

Finally, a short computation shows that the critical values of the functionals f_{b} corresponding to the same fixed point $q \in Q$ are again of the form

$$
\begin{equation*}
f_{b}(u)=\langle\mu, \lambda\rangle-\int_{0}^{1} h_{t}\left(\varphi_{t}(q)\right) \mathrm{d} t \tag{40}
\end{equation*}
$$

and hence they are arranged in a tower parametrized again by the set $\left\{\langle\mu, \eta\rangle \mid \eta \in \mathbb{Z}^{k}\right\}$.

Acknowledgements

The authors would like to thank the partial financial support by CICYT under programme PS92/0197 (A.I.) and grant AP92(C.M.O.).

References

[1] V.I. Arnold, Commentary on "On a geometrical theorem", in: Collected Works. Vol. II. ed. H. Poincaré (Nauka, Moscow, MR 52 \# 5337, 1972) pp. 987-989.
[2] V.I. Arnold, Fixed points of symplectic diffeomorphisms, in: Mathematical Developments Arising from the Hilbert Problems, Proc. Symp. Pure Math., Amer. Math. Soc. 28 (1976) 66.
[3] A. Floer, Symplectic fixed points and holomorphic spheres, Commun. Math. Phys. 120 (1989) 575-611.
[4] B. Fortune, A symplectic fixed point theorem for CP^{n}, Inv. Math. 81 (1985) 29-46.
[5] B. Fortune and A. Weinstein, A symplectic fixed point theorem for complex projective spaces, Bull. Amer. Math. Soc. 12 (1985) 128-130.
[6] A.B. Givental, A symplectic fixed point theorem for toric manifolds, Progress in Math. Floer Memorial Volume, 1994, to appear.
[7] M.J. Gotay and G.M. Tuynman, $\mathbf{R}^{2 n}$ is a universal symplectic manifold for reduction, Lett. Math. Phys. 18 (1989) 55-59.
18] Lê Hông Vân and K. Ono, Symplectic fixed points, the Calabi invariant and Novikov homology, Topology 34 (1995) 155-176.
[9] H. Hofer and D. Salamon, Floer homology and Novikov rings, preprint (1992).
[10] A. Ibort and C. Martínez Ontalba, A universal setting for Arnold's conjecture, C. R. Acad. Sci. Paris 1.318, Série II (1994) 561-566.
[11] M. Kummer, On the construction of the reduced phase space of a hamiltonian system with symmetry, Indiana Univ. Math. J 30 (1981) 281-291.
[12] Y.-G. Oh, A symplectic fixed point theorem on $\mathbf{R}^{2 n} \times \mathbf{C P}^{\boldsymbol{k}}$, Math. Z. 203 (1990) 535-552.
[13] K. Ono, On the Arnold conjecture for weakly monotone symplectic manifolds, Inv. Math. 119 (1995) 519-537.
[14] A. Weinstein, A universal phase space for particles in Yang-Mills fields, Lett. Math. Phys. 2 (1978) 417-420.

[^0]: ${ }^{1}$ In Proposition 1 of [10], the action of G on $J^{-1}(\mu)$ was assumed to be free. We derive here the corresponding result for a general action.

